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1  Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the functions in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains functions for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
exponential of a complex argument, and complementary error function of a complex argument.

2.1 Functions of a Single Real Argument

Most of the functions for functions of a single real argument have been based on truncated Chebyshev
expansions. This method of approximation was adopted as a compromise between the conflicting
requirements of efficiency and ease of implementation on many different machine ranges. For details of
the reasons behind this choice and the production and testing procedures followed in constructing this
chapter see Schonfelder (1976).

Basically, if the function to be approximated is f(z), then for = € [a, ] an approximation of the form

f(x) = g(x) Z’ C, T, (t)

is used (Z’ denotes, according to the usual convention, a summation in which the first term is halved),
where g(x) is some suitable auxiliary function which extracts any singularities, asymptotes and, if possible,
zeros of the function in the range in question and ¢ = ¢(z) is a mapping of the general range [a,b] to the
specific range [—1, +1] required by the Chebyshev polynomials, 7',.(¢). For a detailed description of the
properties of the Chebyshev polynomials see Clenshaw (1962) and Fox and Parker (1968).

The essential property of these polynomials for the purposes of function approximation is that T',(t)
oscillates between £1 and it takes its extreme values n 4 1 times in the interval [—1,41]. Therefore,
provided the coefficients C, decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

E(t) = CHTH (t> :

That is, the error oscillates between +C,, and takes its extreme value n + 1 times in the interval in
question. Now this is just the condition that the approximation be a mini-max representation, one which
minimizes the maximum error. By suitable choice of the interval, [a, b], the auxiliary function, g(x), and
the mapping of the independent variable, ¢(x), it is almost always possible to obtain a Chebyshev
expansion with rapid convergence and hence truncations that provide near mini-max polynomial
approximations to the required function. The difference between the true mini-max polynomial and the
truncated Chebyshev expansion is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient, and
hence the most commonly used, works with the equivalent simple polynomial. The second method, which
is used on the few occasions when the first method proves to be unstable, is based directly on the truncated
Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a suitably
truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine precision)
is converted to the equivalent simple polynomial. That is, we evaluate the set of coefficients b, such that

n—I n—1

yt) = bt =Y C.T, ().
r=0 r=0

The polynomial can then be evaluated by the efficient Horner’s method of nested multiplications,
y(t) = (bO + t(bl + t(b2 +.o. t(ban + tbnfl))) e )

This method of evaluation results in efficient functions but for some expansions there is considerable loss
of accuracy due to cancellation effects. In these cases the second method is used. It is well known that if
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bnfl = C»,,,,l
by = 2tb,_ + C,
bj =2bj1 b2 +Cj j=n—3n—4,..,0

then

SO, T (1) = b — by)

and this is always stable. This method is most efficiently implemented by using three variables cyclically
and explicitly constructing the recursion.

That is,

a = C,
B = 2ta+C,,
Y= Ztﬁ —a+ 071,73
a = 2ty-F+C, 4
B = 2ta—v+C,s

saya = 2ty—p0+4+0C,
,8 = 2t0£ - + C]

y(t) = tB—a+ %CO

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, In, exp, sqrt, which extract
singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth well-
behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a, b] to [—1,41] used range from simple linear mappings to the case when b is infinite,
and considerable improvement in convergence can be obtained by use of a bilinear form of mapping.
Another common form of mapping is used when the function is even; that is, it involves only even powers
in its expansion. In this case an approximation over the whole interval [—a, a] can be provided using a
mapping t = 2(x/ a)z—l. This embodies the evenness property but the expansion in ¢ involves all powers
and hence removes the necessity of working with an expansion with half its coefficients zero.

For many of the functions an analysis of the error in principle is given, namely, if £ and V are the
absolute errors in function and argument and € and 6 are the corresponding relative errors, then

E ~ |f@)V

E o~ |of()s
of (@)

¢ i@ |

If we ignore errors that arise in the argument of the function by propagation of data errors, etc., and
consider only those errors that result from the fact that a real number is being represented in the computer
in floating-point form with finite precision, then 6 is bounded and this bound is independent of the
magnitude of xz. For example, on an 11-digit machine

6] < 107",

(This of course implies that the absolute error V = ¢ is also bounded but the bound is now dependent on
x.) However, because of this the last two relations above are probably of more interest. If possible the
relative error propagation is discussed; that is, the behaviour of the error amplification factor |z f'(z)/f(z)|
is described, but in some cases, such as near zeros of the function which cannot be extracted explicitly,
absolute error in the result is the quantity of significance and here the factor |z f'(z)| is described. In
general, testing of the functions has shown that their error behaviour follows fairly well these theoretical
error behaviours. In regions where the error amplification factors are less than or of the order of one, the
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errors are slightly larger than the above predictions. The errors are here limited largely by the finite
precision of arithmetic in the machine, but € is normally no more than a few times greater than the bound
on 4. In regions where the amplification factors are large, of order ten or greater, the theoretical analysis
gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken from
Abramowitz and Stegun (1972). Users are strongly recommended to consult this book for details before
using the functions in this chapter.

2.2 Approximations to Elliptic Integrals

Four functions provided here are symmetrised variants of the classic elliptic integrals. These alternative
definitions have been suggested by Carlson (1965), Carlson (1977a) and Carlson (1977b) and he also
developed the basic algorithms used in this chapter.

The standard integral of the first kind is represented by
dt
ViEF o)t ry)t+2)

Rp(x,y,2)

where x,y,z > 0 and at most one may be equal to zero.

is chosen so as to make

Rp(z,z,x) = 1//z.

If any two of the variables are equal, Ry degenerates into the second function

The normalisation factor, i >

Ro(@,y) = Re(@,4,9) /\/t—l-—ﬂﬂt-i-y)

where the argument restrictions are now x > 0 and y # 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < z, and to the inverse
circular functions if 0 <z <.

The integrals of the second kind are defined by

Rp(z,y, 2

/ \/t+x )t +y)(t+ 2)°

with z > 0, x > 0 and y > 0, but only one of x or y may be zero.
The function is a degenerate special case of the integral of the third kind
dt
\/ t+z)(t+y)(t+2)(t+p)

R(z,y,2p)

with p # 0 and x,y,z > 0 with at most one equality holding. Thus Rp(z,y,2) = Rj(z,y,2, 7). The
normalisation of both these functions is chosen so that

Rp(z,z,2) = Ry(z,x,z,7) = 1/(z\/).

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient accuracy
when retaining terms of order less than six. Each step of the recurrences reduces the difference from the
mean by a factor of four, and as the truncation error is of order six, the truncation error goes like (4096) ",
where n is the number of iterations.

The above forms can be related to the more traditional canonical forms (see Section 17.2 in Abramowitz
and Stegun (1972)).

If we write ¢ = cos®> ¢, 7 = 1 —m.sin> ¢, s = 1 + n.sin’ ¢, Wher60<gz$< 5m, we have
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the elliptic integral of the first kind:
sin ¢
Flolm) = [ (1= 8721~ m) it = sing. By(a.r. 1)
0

the elliptic integral of the second kind:

sin ¢
E(ém) :/0 (1= )21 — mt2) Pt

=sin¢g.Rp(q,r,1) — %m sin® ¢.Rp(q,7,1)
the elliptic integral of the third kind:

sin ¢
II(n; plm) = /0 (1—t)7"2(1 = mt?) 21 +nt®) dt

=sin¢.Rp(q,7,1) — %n sin® ¢.R;(q,7, 1, 5).

Also the complete elliptic integral of the first kind:
/2
K(m) = / (1= m.sin 6)"12d0 = Ryp(0, 1 — m, 1);
0
the complete elliptic integral of the second kind:

/2
E(m) = /0 (1 —m.sin® 8)'/2d6 = Rp(0,1 —m, 1) — bm.Rp(0,1 —m, 1).

2.3 Bessel and Airy Functions of a Complex Argument

The functions for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as
described in Section 2.1. The functions for functions of a complex argument, however, use different
methods. These functions relate all functions to the modified Bessel functions 7,(z) and K, (z) computed
in the right-half complex plane, including their analytic continuations. I, and K, are computed by
different methods according to the values of z and v. The methods include power series, asymptotic
expansions and Wronskian evaluations. The relations between functions are based on well known
formulae (see Abramowitz and Stegun (1972)).

3 Recommendations on Choice and Use of Available Functions

3.1 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to the
traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely to
simplify the analysis, and these symmetric forms are much more stable to calculate.

The function nag_elliptic_integral rc (s21bac) for R is largely included as an auxiliary to the other
functions for elliptic integrals. This integral essentially calculates elementary functions, e.g.,

Inx :(x—l).RC<(1+T$)2,x), x> 0;
arcsinz = z.Ro(1 — 2%, 1), |z| < 1;

arcsinhz = z.Ro(1 + 27, 1), etc.

In general this method of calculating these elementary functions is not recommended as there are usually
much more efficient specific functions available in the Library. However, nag_elliptic_integral rc (s21bac)
may be used, for example, to compute Inz/(z — 1) when x is close to 1, without the loss of significant
figures that occurs when Inx and x — 1 are computed separately.
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3.2 Bessel and Airy Functions

For computing the Bessel functions J,(x), Y, (z), I,(z) and K,(z) where z is real and v =0 or 1,
special functions are provided, which are much faster than the more general functions that allow a complex
argument and arbitrary real v > 0. Similarly, special functions are provided for computing the Airy
functions and their derivatives Ai(z), Bi(z), Ai'(z), Bi'(z) for a real argument which are much faster than
the functions for complex arguments.

4 Index

Airy function,
Ai or Af,
complex argument,

optionally scaled .........coccovieiiriiinieieeeee e nag_complex_airy_ai (s17dgc)
Af,
r€al ATZUMENT ..ouviiiiiiiiiiiieiieeet ettt nag_airy_ai_deriv (s17ajc)
Al,
1Al ATUIMENL ...tiieieiieie ettt ettt ettt et st ste et e sbeebeebeeneesreenaeens nag_airy_ai (s17agc)

Bi or Bi,
complex argument,

optionally scaled ........cccooiovevieivieiiieecieeeeee e nag_complex_airy_bi (s17dhc)
Bi,
1Al ATZUIMENT ..o.viiiiiiieiieiieicee ettt nag_airy_bi_deriv (s17akc)
Bi,

1Al ATZUIMENL ...euviitiitiitietiitiete ettt ettt ettt ettt estesbestesbesbestestenteeeeentennens nag_airy_bi (s17ahc)

Arccosh,
Inverse hyperboliC COSINEG .......ccoveviiiiiierieiiieiieeie ettt et e ere e s nag_arccosh (sllacc)
Arcsinh,
INVErse NYPErbOlIC SINE ....c.cccvevvieeiiiieiiieiecieete ettt ettt be e e nag_arcsinh (sllabc)
Arctanh,
inverse hyperbolic tangent ..........cccceeiecerieriinieie et nag_arctanh (sllaac)
Bessel function,
Jo,
T€Al ATEUIMENL ..utiiiiiiiiieitieieee ettt sttt st nag_bessel_joO (sl7aec)
Jla
1Al ATGUIMENL ..uviieiiiieie ettt ettt te et te et st e e e e sbeenbesaeeneesseenes nag_bessel_j1 (s17afc)
J(yﬂ:n(z)v
real argUMENt ......c..coceveriririnirceenentene et nag_complex_bessel_j_seq (s18gkc)
Jus
complex argument,
optionally scaled .........ccccovieeiiiienieiireee e nag_complex_bessel_j (s17dec)
Yo,
T€Al ATZUIMENL ...eiiiiiiieieieieie ettt sttt et e b enes nag_bessel_y0 (sl7acc)
Yy,
1€al ATZUIMENT ..utiiiiiiiiiiitieteee ettt st nag_bessel_y1 (s17adc)
Y,
complex argument,
optionally scaled .........ccccoviriiirieniiieiee e nag_complex_bessel_y (s17dcc)
Complement of the Cumulative Normal distribution ................ nag_cumul_normal_complem (si5acc)
Complement of the Error function,
1Al ATZUIMEIE ..evitiitiitiitiitiet ettt ettt ettt ettt ettt et e bt ea e st abe s b e b sbesbeebeebeebeenes nag_erfc (s1lbadc)
scaled,

COMPIEX ATZUMENL ...eevvieiiiiieiieiieeieeiie sttt te st ettt ae e see e nag_complex_erfc (s15ddc)
Cosine INEGral ........cocuiviiiiieiiiieeeee e nag_cos_integral (s13acc)
Cosine,

RYPEIDOLIC ..ot reens nag_cosh (s10acc)
Cumulative Normal distribution function ...........cccceceeeereneneneneneneene nag_cumul_normal (s15abc)
Dawson’s INtEEral ......c.cccoeviieiiiiieieieceeeee ettt e nag_dawson (s1b5afc)
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Digamma function,

SCALEA .ot nag_polygamma_deriv (sl4adc)
Elliptic functions,

Jacobian, sn, cn, dn ........cccoeeiiiiiiiii e nag_real_jacobian_elliptic (s2lcac)
Elliptic integral,

general,

of 2nd kind,

F(2,K,0,D) oo nag_elliptic_integral f (s21dac)

symmetrised,

degenerate of 1st kind,

R et nag_elliptic_integral_rc (s21bac)
of 1st kind,

R e nag_elliptic_integral_rf (s21bbc)
of 2nd kind,

R e nag_elliptic_integral_rd (s21bcc)
of 3rd kind,

R e e nag_elliptic_integral_rj (s21bdc)

Erf,

TEAL ATEUIMENE ....eieiiiieiiiieiee ettt et sttt ettt et st st e bt et e saeenbesaeesbeenee nag_erf (slbaec)
Erfc,

1Al ATZUIMEIE ..etititieiietietietiet ettt ettt ettt ettt bt e bt e st e s eteebeebesbeebeebeebeeneenes nag_erfc (s1badc)

scaled,

COMPIEX ATZUMENLE ...eevvieeiieieiieieete ettt ettt te et e be et st eaeenaeseeeee nag_complex_erfc (s15ddc)
Error function,

TEAL ATEUIMENL ....tiiiiiiiiiit ettt ettt ettt et st st e bt et sbe e b eaae b e nag_erf (slbaec)
Exponential INteral .........ccccciiierieiiirieieiieieceee ettt nag_exp_integral (s13aac)
Fresnel Integral,

ettt bt e ettt et e et e b e bt enteereeteeatesaeete e nag_fresnel_c (s20adc)

S e e ettt et ettt et et et et et et et et e b e be s entensententensensensensentan nag_fresnel_s (s20acc)
GaMMA TUNCHION ..eoviiiiiiieiieiecteee ettt ettt ettt e bt easesaeen nag_gamma (sl4aac)
Gamma function,

INCOMPIELE ...veiiieiieiieii ettt eneas nag_incomplete_gamma (sl4bac)
Generalized Factorial function ...........ccoccoecieviiienieiiiieececeeeee e nag_gamma (sl4aac)

Hankel function H f,l) or H 5,2),
complex argument,

optionally scaled .........ccoovieiiiiiiiieiieieeeee e nag_complex_hankel (s17dlc)
Incomplete Gamma fUNCtioN ........ccceevveeierierieniereeee e nag_incomplete_gamma (sl4bac)
Jacobian elliptic functions, sn, cn, dn,

COMPIEX ATGUMENE ...eoueivieiieiieiieeieieete ettt nag_jacobian_elliptic (s21cbc)

real argUMENt .......ccoeeviiriiiiiiierieeteeete e nag_real_jacobian_elliptic (s2lcac)
Jacobian theta functions 6(x, q),

1Al ATGUIMENL ...oviviiiiiitiiteeteet ettt ettt ettt ebe e nag_jacobian_theta (s21lccc)
Kelvin function,

DL ettt nag_kelvin_bei (s19abc)

DT & ettt b et bttt sb et st nae e nag_kelvin_ber (sl19aac)

KL oottt b et b ettt n et b s nas nag_kelvin_kei (s19adc)

KT 2 ettt ettt ettt ettt a ettt s et et ae st b nennna nag_kelvin_ker (s19acc)
Legendre functions of 1st kind P, (z),

22 € TSRO nag_legendre_p (s22aac)
Logarithm Of 1 4 @ .eeciieieiieieceee e nag_shifted_log (sOlbac)
Logarithm of Gamma function

COMPIEX ettt ettt ettt ettt neeneas nag_complex_log_gamma (sl4agc)

TEAL ittt ettt b ettt b st b s nag_log_gamma (sl14abc)
Modified Bessel function(s),

Iy,

1Al ATEUIMENL ...viiviiiieieitieie ettt ettt sttt et beete e e esbeenes nag_bessel_i0 (s18aec)
Iy,
real arGUMENT .......ccooiiiiiiiiieiiieecee e nag_bessel_il (s18afc)
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Ia+n,71 (ZL’) or Iafn+1 (1’),

r€al ATZUMENL ..o.viieiiiieieeeieie ettt ettt st nag_bessel_i_alpha (s18ejc)
Il,/4(.%'),

1€Al ATZUIMENL ..o.tiieiiiieiieieeiiete ettt ettt e enee e nag_bessel_i_nu (s18eec)
I,

complex argument,

optionally scaled ........cccooieeiirieniieiiiiee e nag_complex_bessel_i (s18dec)

J()/‘FTL*I (.’E) or J(szn,irl (.’IJ),

1€al ATZUMENL ..o.viieiiiieieeiieie ettt ettt st nag_bessel_j_alpha (s18ekc)
K,

real ArgUMENT ......ccooviiiiiiiiiieieieee e nag_bessel_kO (s18acc)
K,

€Al ATZUIMENT ...oiiviiiiieiiieieteee ettt nag_bessel_k1 (s18adc)
K(Wrn(x)’

r€al ATZUMENL ..c.eiieiiiieiieiieie ettt st nag_bessel_k_alpha (s18egc)
Kl//4(x)’

real ArGUMENT .....cccooiiiiiiiiiiiiiieeeeeee ettt nag_bessel_k_nu (s18efc)
K,,

complex argument,

optionally scaled .........cccooieiiirieniiecieiee e nag_complex_bessel_k (s18dcc)
Polygamma function w(”)(m),

(52 Y U SOTPR nag_real_polygamma (sl4aec)
Polygamma function 1" (z2),

[470)11] o) 1) QOSSPSR nag_complex_polygamma (sil4afc)
PST fUNCHON .o e nag_polygamma_fun (sl4acc)
Psi function and derivatives,

SCALEA . nag_polygamma_deriv (s14adc)
Scaled modified Bessel function(s),

e Ky(z),

real ArGUMENT ....eeieiiieiieeieriieie ettt ettt et ae e seeeaeseeens nag_bessel_kO_scaled (s18ccc)
eJ:I{I (.CU),
real argUMENT .....coceviviriiiniincneeenertee et nag_bessel_k1_scaled (s18cdc)
e K, (),
real argUMENT ...c..coeiviriririiriieeeeeenese et nag_bessel_k_nu_scaled (s18edc)
e 1, 4(x),
real ATGUMENT ..o.viiiiiiieiiiiieieete ettt nag_bessel_i_nu_scaled (s18ecc)
e " Iy(2),
real ArgUMENT .....cceiiiiieiiieiieeie ettt ettt e nag_bessel_iO_scaled (s18cec)
e 1T, (2),
1€al ATZUMENT ..o.tiieiiiieiiiiieieee ettt nag_bessel_il_scaled (s18cfc)
Ka-&-n(‘r)’
real argumMEeNt ........cccceeviiiieriiiieneeeee e nag_bessel_k_alpha_scaled (s18ehc)
SINE INLEGTAL ..ottt ettt nag_sin_integral (s13adc)
Sine,

RYPETDOIIC ..ttt ettt nag_sinh (s10abc)
Tangent,

RYPEIDOIIC ..ottt reens nag_tanh (sl10aac)
Trigamma function,

SCALEA ..ottt ettt et nag_polygamma_deriv (sl4adc)
Zeros of Bessel functions J,,(z), Jo(7), Yo (2), Yo (T) oo, nag_bessel_zeros (s17alc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.
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